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Why fast radio transients?

 Excellent probes of ISM, IGM via dispersion measure 
(DM) and rotation measure (RM)
 Laboratories of compact sources, extreme astrophysics

 Known sources and targets
 Intermittent pulsars (RRATs), 

giant pulses, merging neutron stars

 Exotic sources
 Black hole evaporation
 Gravitational wave events
 Extra-terrestrial intelligence?
 Etc.

 Largely unexplored space. New discoveries await!
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[Lorimer et al., 2007]
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Very Long Baseline Array

 10 25-m dishes
 Data recorded to disk 

at each telescope, 
shipped to Array 
Operations Center in 
Socorro for correlation

 Correlation by DiFX software correlator 
[Deller et al., 2007]
– Software correlators are flexible!
– Can get autocorrelations with short integration times (1 ms), 

virtually for free (nothing's for free)
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V-FASTR: FASt TRansient Detection

 Trailblazer for CRAFT survey science project for ASKAP
 Goal: continuously detect fast (< 5s) radio transients

 Commensal detection: Analyze VLBA filterbank data in real-time 
as it flows through the DiFX software correlator

 Minimal impact to correlator operations
 Detect transients even in campaigns with other observing goals

 Fast “trigger” decision to save buffer for offline analysis
 Dramatically reduce data volume for next stage of analysis

 Innovations
 Adaptive behavior using injected (known) pulses
 Machine learning for multi-station detection and RFI excision

 Now running 24/7 on all VLBA observations
 Detections to be shared with PIs first
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V-FASTR Architecture
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Example VLBA Data

 Pulsar B0329+54
 DM 26.8 pc/cm3

 Period: 714 ms

 VLBA observations
 1.4-1.674 GHz
 1 ms integration time
 9 scans, each lasting 242 s
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Robust Summation

 Incoherent summation: sum power across all stations

 Robust summation: omit min and max stations from sum
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Multi-Station Detection

 Learn model of data “background”
 Compute combined estimate that new signal is remote

(observed by multiple stations)

 Improves sensitivity over incoherent summation
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local RFI
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Machine Learning: Adaptation

 Inject known (synthetic) pulses into data stream
 Adjust detection thresholds to maintain optimal 

performance 
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Pulsar B0329+54 Detection Results
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Pulsar B0329+54 Sensitivity Results
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False Positives Incurred
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V-FASTR: Summary

 Now running 24/7 on all VLBA observations
 Value of real-time commensal transient searches

 Detect events otherwise discarded even for campaigns 
uninterested in transients

 Machine learning enables better multi-station detection 
and adaptive detection thresholds

 Testbed for SKA-related concerns
 Maintain acceptably low false alarm rate, real-time performance
 Constrain buffer (disk) consumption for detections
 Value of software correlator

 Raises issues in advance of the SKA
 What to do with detections?  New policies needed?
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Thanks to…
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 Dayton Jones, Joe Lazio, Bob Preston (JPL)
 JPL, NSF, NRAO, ICRAR (funding)


